cozymori
cozymori

Simpler, Easier, For Developers. Open-source frameworks for AI observability.

Products

  • VectorWave
  • VectorSurfer

Resources

  • Documentation
  • GitHub

© 2026 cozymori. All rights reserved.

Built with simplicity.

Overview

Getting Started

  • Introduction
  • Quick Start

VectorWave

  • VectorWave Overview
  • Installation
  • @vectorize Core
  • Semantic Caching
  • Self-Healing
  • Golden Dataset
  • Drift Detection
  • Replay Testing
  • RAG Search
  • Advanced Configuration
  • API Reference

VectorSurfer

  • VectorSurfer Overview
  • Getting Started
  • Usage Guide

Ecosystem

  • VectorCheck
  • VectorSurferSTL
  • Contributing

VectorWave

VectorWave Overview

What is VectorWave and how does Execution-Level Semantic Optimization work?

What is VectorWave?

VectorWave is a unified framework designed to solve the "Efficiency vs. Reliability" dilemma in LLM-integrated applications. It introduces Execution-Level Semantic Optimization combined with Autonomous Self-Healing.

We transform volatile data that disappears the moment code is executed into a Searchable and Reusable permanent knowledge asset.

Unlike conventional semantic caching tools that focus on text similarity, VectorWave captures the entire Function Execution Context. It creates a permanent "Golden Dataset" from successful executions to:

  1. Slash Costs — Serve cached results for semantically similar inputs, bypassing expensive computations.
  2. Fix Bugs — Automatically diagnose runtime errors and generate GitHub PRs using LLM.
  3. Monitor Quality — Detect when user inputs start drifting away from known patterns (Semantic Drift).

Architecture

VectorWave's architecture consists of three core components:

┌──────────────────────────────────────────────────┐
│                   VectorWave                      │
│                                                   │
│  ┌─────────────────┐  ┌──────────────────────┐   │
│  │ Optimization     │  │ Trace Context         │   │
│  │ Engine           │  │ Manager               │   │
│  │                  │  │                       │   │
│  │ • Cache Hit Check│  │ • Execution Logging   │   │
│  │ • HNSW Index     │  │ • Input/Output Store  │   │
│  │ • Batch Write    │  │ • trace_id / span_id  │   │
│  └────────┬─────────┘  └───────────┬───────────┘   │
│           │                        │               │
│  ┌────────┴────────────────────────┴───────────┐   │
│  │          Self-Healing Pipeline               │   │
│  │                                              │   │
│  │  • Error Detection → RAG Diagnosis           │   │
│  │  • LLM Code Fix → AST Patching              │   │
│  │  • Branch Creation → GitHub PR               │   │
│  └──────────────────────────────────────────────┘   │
│                        │                            │
│                    Weaviate                          │
│              (Vector Database)                       │
└──────────────────────────────────────────────────────┘

Core Components

  • Optimization Engine — Intercepts function calls to check for semantic cache hits using HNSW indexes. On a hit, returns the cached result in ~0.02s instead of re-executing the function.
  • Trace Context Manager — Collects execution logs, inputs, and outputs without modifying your code structure. Supports hierarchical distributed tracing with trace_id and span_id.
  • Self-Healing Pipeline — An autonomous agent that wakes up on errors, diagnoses the root cause via RAG, uses AST parsing to generate a code fix, and submits a GitHub Pull Request.

Data Storage

VectorWave stores data in four Weaviate collections:

CollectionPurposeData
VectorWaveFunctionsStatic function metadataSource code, docstrings, descriptions, module paths
VectorWaveExecutionsDynamic execution logsInputs, outputs, errors, trace IDs, timestamps, embeddings
VectorWaveGoldenDatasetVerified high-quality executionsCurated results for cache priority and drift baseline
VectorWaveTokenUsageLLM token trackingModel, usage type, token counts for cost monitoring

VectorSurfer: All collection data is visualized in the VectorSurfer dashboard — KPI cards, execution timelines, trace waterfalls, and Golden Dataset management.

Performance Benchmark

MetricDirect ExecutionWith VectorWaveImprovement
Latency (Hit)~2.5s (LLM API)~0.02s125x Faster
Cost (Hit)$0.03 / call$0.00100% Savings
ReliabilityManual Fix RequiredAuto-PR CreatedAutonomous

Feature Comparison

FeatureTraditional Tools (e.g., GPTCache)VectorWave
Semantic CachingText-basedExecution Context-based
Self-Healing (Auto-Fix)NoAutonomous
GitOps (Auto-PR)NoSeamless
Semantic Drift DetectionNoDrift Radar
Zero-Config SetupSetup RequiredSingle Decorator

Ecosystem

VectorWave is the core SDK in the cozymori ecosystem:

┌──────────────────────────────────────────┐
│              VectorWave                   │
│  (Core SDK — traces, caches, heals)      │
│  Stores execution data in Weaviate       │
└──────────┬───────────┬───────────┬───────┘
           │           │           │
           v           v           v
┌──────────┐ ┌────────────┐ ┌───────────┐
│VectorSurfer│ │VectorSurfer│ │VectorCheck│
│(Next.js +  │ │STL         │ │(CLI Test  │
│ FastAPI)   │ │(Streamlit) │ │ Framework)│
└────────────┘ └────────────┘ └───────────┘
  • VectorSurfer — Full-stack web dashboard for AI observability
  • VectorSurferSTL — Lightweight Streamlit dashboard
  • VectorCheck — CLI regression testing framework

Requirements

  • Python 3.10 — 3.13
  • Docker (for Weaviate vector database)
  • OpenAI API key (optional, for self-healing and RAG features)

External Resources

  • GitHub: Cozymori/VectorWave — Source code and issues
  • CodeWiki: VectorWave — AI-generated documentation
  • Weaviate Documentation — Vector database docs

Next Steps

  • Installation Guide — Get VectorWave up and running
  • @vectorize Core — Understand the core decorator
  • Semantic Caching — Cut LLM costs by 90%+